	· a · · · · · · · · · · ·	Roll N	Vo
Total No. o	f Questions : 6]	[Total No.	of Printed Pages:
	EG	S-171	
B.E. 3rd	d Semester (C Engg. (Zero Se	GPA) Elect. em.) Exami	and Commun. nation - 2018
E	LECTROMEC	HANICALI	ENERGY
Time: 3 H		r-EL-302 [Max	imum Marks : 60
) Attempt all i) Use of scien		ntor is required.
1. Cho	ose any five-		10
(i)			generated by an ad rotating at 250
	(a) 60 Hz	(b)	50 Hz
	(c) 25 Hz	(d)	$16\frac{2}{3}$ Hz
(ii)			chronous motor he following
EGS-17	1 ***	(1)	Turn Over

UITians

The state of	(a)	an induction mo	tor	. A magazini
	(b)	rotor converter	, 14	
	(c)	Alternator		
ALC.	(d)	Series motor		
(iii)	spee		* 1	he synchronous of an induction
	(a)	regulation	(b)	back lash
1000	(c)	slip	(d)	lag
(iv)	An i	nducation motor	works	s with-
	(a)	dc only	(b)	ac only
A LAND	(c)	both ac and dc	(d)	none of them
(v)	The	motor used for si	ignal a	nd timing device
	(a)	Reluctance mo	tor	
X 10-2	(b)	Shaded pole m	otor	
THE THEFT	(c)	Hysteresis mo	tor	
	(d)	Capacitor moto	or	
EGS-17	1	(2)) (T	
			6	

(vi)	Which of the following relationships is not valid for short transmission lines?			
	(a) $B=Z=C$			
	(b) $A = D = 1$			
	(c) $I_s = I_r$			
	(d) None of the above			
	the contract of the state of	hunt		

(vii) In medium transmission line the shunt capacitance is taken into account in-

- T-method (a)
- (b) π method
- All of the above (c)
- None of the above (d)

(viii) Which of the following regulation is considered to be the best-

- 2% (a)
- (b) 30%
- 70% (c)
- (d) 98%

(ix) Starting torque of an induction motor is proportional to-

- (a) V_s
- (b) $(V_s)^2$
- (c) $\frac{1}{2} V_s$ (d) $(V_s)^{1/2}$

EGS-171

(3)

Turn Over

- (x) In 'cogging', the motor-
 - (a) refuses to start at no load
 - (b) runs at low speed
 - (c) runs with excessive vibrations
 - (d) runs with excessive sound
- 2. (a) Write a short note on three phase rotating magnetic field.
 - (b) Derive torque equation for a single phase salient pole machine.

or

- (a) Draw a schematic diagram indicating flow of energy in the conversion of electrical energy into mechanical form. Discuss in brief the steps involved.
- (b) For a linear magnetic circuit derive the expressions for stored energy and co-energy.
- 3. (a) Draw the Torque-slip characteristic of an induction motor. Indicate the region where characteristic is nearly linear.

EGS-171

(4)

(b) A 8-pole, three phase induction motor is supplied from 50 Hz, AC supply. On full load, the frequency of induced emf in rotor in 2Hz. Find the full load slip and the corresponding speed.

or

- (a) Explain rotor resistance speed control of induction motors. State its limitations. 5
- (b) Draw and explain the phasor diagram of 3 phase induction motor.
- 4. (a) Explain the double revolving field theory of single phase induction motor. 5
 - (b) What is a hysteresis motor, explain its working and characteristics.

OI

- (a) Explain the working of capacitor start capacitor run induction motor.
- (b) Discuss the principle of operation and working of universal motor. 5

EGS-171

(5)

Turn Over

UITians

5.	(a)	Discuss the constructional feature	s of
	cylindrical rotor and salient pole altern	ators	
		and comment on their ratings.	5
			_

(b) A 3-phase, 800 kVA, 11 kV, star connected alternator has resistance of 1.5Ω/ phase and synchronising reactance of 25Ω/ phase. Find the percentage regulation for a load of 600 kW at 0.8 leading power factor.

or

- (a) Write a short note on "hunting" in an alternator.
- (b) Draw the power angle diagram. Give an expression for power output in terms of power angle.
- 6. (a) Give the equivalent circuit representation for a short, medium and long transmission line.
 - (b) What is the effect of transmission voltage on line efficiency, show through derivation.

or

EGS-171

(6)

UITians

(a)	B, C, D for medium method.	circuit constants tone by nominal	A, T-
(b)			
4	Derive an expression for required for Two wire d point earthed	or volume of copp	er
	point earthed.	.c. system with mi	d-

EGS-171

(7)

Turn Over